Block of glutamate-glutamine cycle between astrocytes and neurons inhibits epileptiform activity in hippocampus.
نویسندگان
چکیده
Recurrent epileptiform activity occurs spontaneously in cultured CNS neurons and in brain slices in which GABA inhibition has been blocked. We demonstrate here that pharmacological treatments resulting in either the block of glutamine production by astrocytes or the inhibition of glutamine uptake by neurons suppress or markedly decrease the frequency of spontaneous epileptiform discharges both in primary hippocampal cultures and in disinhibited hippocampal slices. These data point to an important role for the neuron-astrocyte metabolic interaction in sustaining episodes of intense rhythmic activity in the CNS, and thereby reveal a new potential target for antiepileptic treatments.
منابع مشابه
Glutamine is required for persistent epileptiform activity in the disinhibited neocortical brain slice.
The neurotransmitter glutamate is recycled through an astrocytic-neuronal glutamate-glutamine cycle in which synaptic glutamate is taken up by astrocytes, metabolized to glutamine, and transferred to neurons for conversion back to glutamate and subsequent release. The extent to which neuronal glutamate release is dependent upon this pathway remains unclear. Here we provide electrophysiological ...
متن کاملMaintenance of thalamic epileptiform activity depends on the astrocytic glutamate-glutamine cycle.
The generation of prolonged neuronal activity depends on the maintenance of synaptic neurotransmitter pools. The astrocytic glutamate-glutamine cycle is a major mechanism for recycling the neurotransmitters GABA and glutamate. Here we tested the effect of disrupting the glutamate-glutamine cycle on two types of neuronal activity patterns in the thalamus: sleep-related spindles and epileptiform ...
متن کاملNeuron to Astrocyte Communication via Cannabinoid Receptors Is Necessary for Sustained Epileptiform Activity in Rat Hippocampus
Astrocytes are integral functional components of synapses, regulating transmission and plasticity. They have also been implicated in the pathogenesis of epilepsy, although their precise roles have not been comprehensively characterized. Astrocytes integrate activity from neighboring synapses by responding to neuronally released neurotransmitters such as glutamate and ATP. Strong activation of a...
متن کاملNeuronal pyruvate carboxylation supports formation of transmitter glutamate.
Release of transmitter glutamate implies a drain of alpha-ketoglutarate from neurons, because glutamate, which is formed from alpha-ketoglutarate, is taken up by astrocytes. It is generally believed that this drain is compensated by uptake of glutamine from astrocytes, because neurons are considered incapable of de novo synthesis of tricarboxylic acid cycle intermediates, which requires pyruvat...
متن کاملDe novo Synthesis of Glial Glutamate and Glutamine in Young Mice Requires Aspartate Provided by the Neuronal Mitochondrial Aspartate-Glutamate Carrier Aralar/AGC1
In brain, the glutamate-glutamine and the glutamate-glutamine-GABA cycles are essential for efficient glutamatergic and GABAergic neurotransmission. The interactions between neurons and astrocytes required for the operation of these cycles have received considerable attention since their discovery (1). In gray matter, glutamate released from glutamatergic neurons is mostly taken up into astrocy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 88 5 شماره
صفحات -
تاریخ انتشار 2002